FANDOM


Most popular article!
Star-sizes

Figure 1. Size Comparison of the bodies of Solar System and several well-known stars. Credit to Dave Jarvis


Below is an ordered is a list of the largest stars currently known to humans in terms of diameter relative to the diameter of the Sun. The orbits of the planets of our Solar System, the Asteroid Belt, and the Habitable Zone are included for the sake of comparison.[1]

This list will never be $ 100% $ accurate and reliable because there is no way to directly measure stars, and variable stars change their diameter over time.

Shortcut:

LISTOFSTARS

Many of the stars have diameters that are poorly determined, which could make them top the list in real life. As of 2018, this is the most recent (and reliable) order.

List

List of the largest stars
Star name Solar radii
(Sun = $ 1 $)
Method Notes
VY Canis Majoris (Humphreys et al estimate) $ (1,800 -) 2,200 $[2][3] L/Teff The largest star known,[4] assuming that the largest parameter of Westerlund 1-26 is not correct.
Red Supergiants of the star cluster Westerlund 1 $ 2,000 $ (undefined)[5] Not yet properly identified. Westerlund 1-26 and Westerlund 1-237 are included in the list. (see below) Reported for reference
Orbit of Saturn $ 1,940 - 2,169 $ Reported for reference
VV Cephei A $ (1,600 $[6][7]–) $ 1,900 $[6][note 1] VV Cep A is a highly distorted star in a close binary system, losing mass to the secondary for at least part of its orbit.
UY Scuti $ 1,708 ± 192 $[8] AD
V838 Monocerotis (at largest) $ 1,570 ± 400 $[9] Variable star that erupted rapidly in size on 2012. V838 Monocerotis has been erroneously portrayed as the claimed planet "Nibiru" or "Planet X".
WOH G64 $ 1,540 $[10] L/Teff The largest star in the Large Magellanic Cloud.
RW Cephei $ 1,535 $ [11][12]
Westerlund 1-26 $ 1,530 $[13]$ 2,550 $ [5][14] Located in the star cluster Westerlund 1. The higher value is calculated with the Stefan-Boltzmann law (see below).
VX Sagittarii $ 1,520 $[15] - $ 1,550 $[16]
V354 Cephei $ (690-) $[15] $ 1,520 $[6]
RSGC1-F02 $ 1,498 $[17]
KW Sagittarii $ (1,009 $[8]$ -) $ $ 1,460 $[6] AD & L/Teff
RSGC1-F01 $ 1,435 $[17]
VY Canis Majoris (Wittowski et al estimate) $ 1,420 ± 120 $[18] AD
KY Cygni $ 1,420 $[6]
Mu Cephei (Herschel's "Garnet Star") ($ 650 $[19]$ - $) $ 1,420 $[6] The reddest star in the night sky in terms of the B-V color index.
HR 5171 A $ 1,315 ± 260 $[20] AD HR 5171 A is a highly distorted star in a close binary system, losing mass to the secondary, and is also variable in temperature, thus probably also in diameter. Traditionally, it is considered the largest known yellow hypergiant.
SMC 18136 $ 1,310 $[21] This would be the largest star in the SMC.
J004424.94+412322.3 $ 1,300 $[22] L/Teff The largest star in the Andromeda Galaxy.
LMC 136042 $ 1,240 $[21]
BI Cygni $ 1,240 $[6] L/Teff
Westerlund 1-237 $ 1,233 $[23]
S Persei $ 1,230 $[6] AD & L/Teff A red hypergiant localed in the Perseus Double Cluster.
SMC 5092 $ 1,220 $[21]
LMC 175464 $ 1,200 $[21]
LMC 135720 $ 1,200 $[21]
RAFGL 2139 $ 1,200 $[24] RAFGL 2139 is a rare red supergiant companion to WR 114 that has a bow shock.
PZ Cassiopeiae $ 1,190 $[6] L/Teff
SMC 69886 $ 1,190 $[21]
NML Cygni $ 1,183 $[25]$ –2,770 $ or $ 1,640 $[26] It is a common misconception that NML Cygni's diameter is 1,650 times the Sun's diameter, but this number was made up completely by a Wikipedia editor and currently is not scientifically supported and obsolete.[27]
RSGC1-F05 $ 1,177 $[17] L/Teff
RSGC1-F03 $ 1,168 $[17]
LMC 119219 $ 1,150 $[21]
RSGC1-F08 $ 1,146 $[17]
BC Cygni $ 1,140 $[6]$ -1,230 $[28] Other recent estimates range from 856 R to 1,553 R.[29]
SMC 10889 $ 1,130 $[21]
LMC 141430 $ 1,110 $[21]
LMC 175746 $ 1,100 $[21]
RSGC1-F13 $ 1,098 $[17]
RT Carinae $ 1,090 $[6]
RSGC1-F04 $ 1,082 $[17]
LMC 174714 $ 1,080 $[21]
LMC 68125 $ 1,080 $[21]
SMC 49478 $ 1,080 $[21]
SMC 20133 $ 1,080 $[21]
V396 Centauri $ 1,070 $[6]
SMC 8930 $ 1,070 $[21]
Orbit of Jupiter $ 1,064–1,173 $ Reported for reference
HV 11423 $ 1,060–1,220 $[30] L/Teff HV 11423 is variable in spectral type (observed from K0 to M5), thus probably also in diameter. In October 1978, it was a star of M0I type.
CK Carinae $ 1,060 $[6]
SMC 25879 $ 1,060 $[21]
LMC 142202 $ 1,050 $[21]
LMC 146126 $ 1,050 $[21]
LMC 67982 $ 1,040 $[21]
U Lacertae $ 1,022 $[15] L/Teff
RSGC1-F11 $ 1,015 $[17]
LMC 143877 $ 1,010 $[21]
SMC 46497 $ 990 $[21]
LMC 140296 $ 990 $[21]
RSGC1-F09 $ 986 $[17] L/Teff
NR Vulpeculae $ 980 $[6]
SMC 12322 $ 980 $[21]
LMC 177997 $ 980 $[21]
SMC 59803 $ 970 $[21]
GCIRS 7 $ 960 ± 92 $[31] AD
Betelgeuse (Alpha Orionis) $ 950 $[32] $ (887 ± 203 - 1,200) $ The second brightest star in the Orion constellation and the 9th brightest overall.
SMC 50840 $ 950 $[21]
RSGC1-F10 $ 931 $[17] L/Teff
S Cassiopeiae $ 930 $[33][34]
IX Carinae $ 920 $[6]
HV 2112 $ 916 $[35] Most likely candidate for a Thorne-Zytkow Object. Calculated with the Stefan-Boltzmann Law.
RSGC1-F07 $ 910 $[17]
LMC 54365 $ 900 $[21]
NSV 25875 $ 891 $[25]
LMC 109106 $ 890 $[21]
RSGC1-F06 $ 885 $[17]
LMC 116895 $ 880 $[21]
SMC 30616 $ 880 $[21]
LMC 64048 $ 880 $[21]
V437 Scuti $ 874 $[25]
V602 Carinae $ 860 $[6]$ -1,050 $[36] L/Teff & AD
V669 Cassiopeiae $ 859 $[25] L/Teff
SMC 55681 $ 850 $[21]
SMC 15510 $ 850 $[21]
LMC 61753 $ 830 $[21]
LMC 62090 $ 830 $[21]
SMC 11709 $ 830 $[21]
V1185 Scorpii $ 830 $[25] L/Teff
Outer limits of the asteroid belt $ 816 $ Reported for reference
LMC 142199 $ 810 $[21]
Antares A (Alpha Scorpii A) $ 800 $[37] (varies by $ 165 $)[38] The brightest star in the Scorpius constellation and the 15th brightest overall.
Eta Carinae A (Tseen She) $ (60-) 800 $[39] Previously thought to be the most massive single star, but in 2005 it was realized to be a binary system. During the Great Eruption, it was 1,400 R.[40] Older estimates gives 85–195 R.[41]
LMC 134383 $ 800 $[21]
BO Carinae $ 790 $[6] L/Teff
LMC 142907 $ 790 $[21]
SU Persei $ 780 $[6] All in the Perseus Double Cluster.
RS Persei $ 770 $[42]$ -1,000 $[6] AD & L/Teff
AV Persei $ 770 $[6] L/Teff
V355 Cepheus $ 770 $[6]
V915 Scorpii $ 760 $[43]
S Cephei $ 760< $[44]
SMC 11939 $ 750 $[21]
HD 303250 $ 750 $[6]
V382 Carinae $ 747 $[45] The brightest yellow hypergiant in the night sky, one of the rarest types of star. Achmad (1992) calculates 700 ± 250 R.[46]
RU Virginis $ 742 $[44]
LMC 137818 $ 740 $[21]
SMC 48122 $ 740 $[21]
SMC 56732 $ 730 $[21]
V648 Cassiopeiae $ 710 $[6] L/Teff
TV Geminorum $ 620-710 $[47] $ (–770) $[6]
HD 179821 $ 704 $[48]
LMC 169754 $ 700 $[21]
LMC 65558 $ 700 $[21]
V528 Carinae $ 700 $[6] L/Teff
The following well-known stars are listed for the purpose of comparison.
Pi1 Gruis $ 694 $[49] Pi1 Gruis is a red giant with giant convention loops on its surface.[50]
VY Canis Majoris (Massey et al estimate) $ 600 $[51] L/Teff
119 Tauri $ 587 $[52]$ -608 $[53] Can be occulted (blocked out of view) by the Moon, allowing accurate determination of its apparent diameter.
Solar System's Habitable Zone $ 557.9 $ ($ x̅ $)[54][55][56][57] Reported for reference
Rho Cassiopeiae $ 450 $[58]
Inner limits of the asteroid belt $ 412 $ Reported for reference
Sigma Canis Majoris $ 420 $[6] The indigenous Wergaia people of southeast Australia saw it as Unurgunite, flanked by his wives.[59]
Mira A (Omicron Ceti) $ 332–402 $[60] Prototype Mira variable.
R Lepus $ 400 - 535 $[61]
V509 Cassiopeiae $ 400 - 900 $[62] Yellow Hypergiant star.
Iota Scorpii (Apollyon) $ 400 $[63]
V838 Monocerotis (at smallest) $ 380 $[64] Variable star that erupted rapidly in size on 2012. V838 Monocerotis has been erroneously portrayed as the claimed planet "Nibiru" or "Planet X".
S Doradus $ 380 $[65] Prototype Luminous Blue Variable. Also a very luminous star.[66]
R Doradus $ 370 ± 50 $[67] Star with the second largest apparent size after the Sun.
IRC +10420 $ 357 $[68]$ –1,342 $[25] A yellow hypergiant that has increased its temperature into the LBV range.
Tail of Comet Hyakutake $ 360 $ Reported for reference
Chi Cygni $ 316 $[69] Variable star located in the Cygnus constellation.
HR 5171 Ab $ 312–401 $[20], $ 650 ± 150 $[70] AD The yellow hypergiant companion of HR 5171 A.
The Pistol Star $ 306 $[71] Blue hypergiant; among the most massive and luminous stars known.
IRAS 17163-3907 (the Fried egg nebula) $ 300-400 $
Orbit of Mars $ 297 - 358 $ Reported for reference
Delta2 Lyrae $ 286 $[72]
Alpha Herculis (Ras Algethi) $ 284 $[73]
Sun's red giant phase $ 256 $ The hydrogen in the core would be exhausted in 4 billion years. In 5 billion years, The Sun would reach the tip of the red-giant branch of the Hertzsprung–Russell diagram. Reported for reference
Cygnus OB2-12 $ 246 $[74]
Zeta Cephei $ 230 $[75]
W Hydrae $ 229 - 560 $
HR Carinae $ 220 $[76]
Wezen $ 215 $[77] This star is present on the flag of Brazil.[78]
Deneb (Alpha Cygni) $ 114 $[79] - 203[80]
Orbit of Earth $ 211 - 219 $ Reported for reference
Omicron1 Cygni (31 Cygni) $ 197 $[81]
RS Puppis $ 194 $[82]
l Carinae $ 169 $[83]
Orbit of Venus $ 154 - 157 $ Reported for reference
Gamma Cygni (Sadr) $ 150 $[84]
Enif (Epsilon Pegasi) $ 150 $[85][possible unreliable source?] L/Teff
Epsilon Aurigae A (Almaaz) $ 143-358 $[86] Epsilon Aurigae Aur was incorrectly hailed as the largest star with a radius 2,000 R or 3,000 R,[87] even though it later turned out not to be an "infrared light star" but rather a dusk torus surrounding the system.
VV Storm[citation needed] (V533 Carinae, y Carinae) $ 141,5 $[88]
Gacrux $ 113 $[89] Closest Red Giant to the Earth.
Beta Pegasi (Scheat) $ 95 $
Peony Nebula Star $ 92 $[90] Candidate for most luminous star in the Milky Way.[91]
Orbit of Mercury $ 66 - 100 $ Reported for reference
R Scuti $ 70 $[92]$ -84 $[93] The first variable star discovered in the Scutum constellation.
Gamma Andromedae $ 80 $[94][possible unreliable source?]
Rigel (Beta Orionis) $ 78.9 $[95]$ -115 $[96]
Sadalmelik (Alpha Aquarii) $ 77 $[97]
P Cygni $ 76 $ Earliest known candidate of a Luminous Blue Variable.
Canopus (Alpha Carinae) $ 71 $[98] Second brightest star in the night sky.
Polis[99] (Mu Sagittarii) $ 67.9 $[100]
Alpha Apodis $ 56.092 $[101] L/Teff
Alphard (Alpha Hydrae) $ 50.5 $[102] - $ 55.93 $[103]
Eltanin $ 48.15 $[104] L/Teff
LBV 1806-20 $ 45 - 145 $[105] Once a candidate for the most luminous star in the Milky Way.
Aldebaran (Alpha Tauri) $ 44.13 $[106]
Schedar (Schedir, Alpha Cassiopeiae) $ 42.1 $[107] A/D
Kochab (Beta Ursae Minoris) $ 42.06 $[103] L/Teff
R136a1 $ 35.4 $[108] Also on record as the most massive and luminous star known.[109]
Arcturus (Alpha Boötis) $ 25.4 $[110] Brightest star in the northern hemisphere.
R136a2 $ 23.4 $[111]
HDE 226868 $ 20-22 $[112] The supergiant companion of the famous black hole Cygnus X-1. The black hole is 500,000 times smaller than the star.
Zeta Orionis (Alnitak) $ 20 $ [113] The first star in Orion's belt.
Gamma Velorum (Regor) $ 17 $[114] The brightest and closest Wolf Rayet star in the night sky.
Hamal (Alpha Aries) $ 14.85 $[103] L/Teff
VV Cephei B $ 13 $[7]$ -25 $[115] The B-type main sequence companion of VV Cephei A.
WR 104 $ 10 $ Located 8,000 light years away from us, this star could destroy life on Earth with its self-destructive supernova.[116]
Sun $ 1 $ The largest object in the Solar System.
Reported for reference

If a star was marked with AD in the Method column then its diameter was measured using its distance from the Sun and its angular diameter.

Stefan-Boltzmann Law

Shortcut:

Stefan-Boltzmann Law

If a star was marked with $ L/T $$ eff $ in the Method column then its diameter was measured using the Stefan-Boltzmann Law. Stellar diameters are usually approximated using the Stefan–Boltzmann law with the star's luminosity and effective temperature. The Stefan-Boltzmann law states that the total radiant heat energy emitted from a surface is proportional to the fourth power of its absolute temperature.

To calculate a star's diameter with the Stefan-Boltzmann law you must do the following calculation:

Square root of $ ((5772/T)^4 * L) $ where $ T $ represents the effective temperature in Kelvin (not Celsius) and $ L $ represents the luminosity in terms greater than the Sun.

Temperature of stars

The temperature of stars other than the Sun can be approximated with the Stefan-Boltzmann Law using a similar means by treating the emitted energy as a black body radiation.[117] So:

$ L = 4 \pi R^2 \sigma {T_e}^4 $

where L is the luminosity, σ is the Stefan–Boltzmann constant, R is the stellar radius and T is the effective temperature. This same formula can be used to compute the approximate radius of a main sequence star relative to the sun:

$ \frac{R}{R_\odot} \approx \left ( \frac{T_\odot}{T} \right )^{2} \cdot \sqrt{\frac{L}{L_\odot}} $

where R, is the Sun's diameter, L is the solar luminosity, and so forth.

With the Stefan–Boltzmann law, astronomers can easily infer the radii of stars. The law is also met in the thermodynamics of Black Holes in so-called Hawking radiation.

References

  1. Their values come from conversion between Astronomical Units (the distance between the Earth and the Sun, $ 149 600 000 $ km) and solar diameters.
  2. bibcode=2006astro.ph.10433H
  3. Cite error: Invalid <ref> tag; no text was provided for refs named largest
  4. https://www.aanda.org/articles/aa/abs/2013/11/aa21683-13/aa21683-13.html
  5. 5.0 5.1 https://www.aanda.org/articles/aa/abs/2011/07/aa16990-11/aa16990-11.html
  6. 6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20 6.21 6.22 6.23 6.24 6.25 Table 4 in https://doi.org/10.1086%2F430901
  7. 7.0 7.1 Wright, K. O. (1977). "The system of VV Cephei derived from an analysis of the H-alpha line". Journal of the Royal Astronomical Society of Canada 71: 152. Bibcode 1977JRASC..71..152W.
  8. 8.0 8.1 https://www.aanda.org/articles/aa/abs/2013/06/aa20920-12/aa20920-12.html
  9. bibcode=2005ApJ...622L.137L
  10. https://doi.org/10.1088%2F0004-6256%2F137%2F6%2F4744
  11. doi:10.1086/190559
  12. doi:10.1111/j.1365-2966.2010.16965.x
  13. https://academic.oup.com/mnrasl/article/437/1/L1/1012158
  14. https://doi.org/10.1088%2F0004-637X%2F760%2F1%2F65
  15. 15.0 15.1 15.2 https://doi.org/10.1051%2F0004-6361%2F201013993
  16. https://arxiv.org/abs/1804.00894
  17. 17.00 17.01 17.02 17.03 17.04 17.05 17.06 17.07 17.08 17.09 17.10 17.11 Davies, B.; Figer, D. F.; Law, C. J.; Kudritzki, R. P.; Najarro, F.; Herrero, A.; MacKenty, J. W. (2008). "The Cool Supergiant Population of the Massive Young Star Cluster RSGC1". The Astrophysical Journal 676 (2): 1016–1028. arXiv:0711.4757. Bibcode 2008ApJ...676.1016D. Template:Citation error.
  18. https://web.archive.org/web/20180526220913/https://doi.org/10.1051%2F0004-6361%2F201219126
  19. https://doi.org/10.1086%2F312879
  20. 20.0 20.1 doi=10.1051/0004-6361/201322421
  21. Cite error: Invalid <ref> tag; no text was provided for refs named mc
  22. doi=10.1088/0004-637X/703/1/420
  23. Cite error: Invalid <ref> tag; no text was provided for refs named thomas
  24. Gvaramadze, V. V.; Menten, K. M.; Kniazev, A. Y.; Langer, N.; MacKey, J.; Kraus, A.; Meyer, D. M.-A.; Kamiński, T. (2014). "IRC -10414: A bow-shock-producing red supergiant star". Monthly Notices of the Royal Astronomical Society 437: 843. arXiv:1310.2245. Bibcode 2014MNRAS.437..843G. Template:Citation error.
  25. 25.0 25.1 25.2 25.3 25.4 25.5 doi:10.1051/0004-6361/200913771.
  26. doi=10.1051/0004-6361/201219587. Calculated from the luminosity and effective temperature: Square root of <math>(5,772/2,500)^4 x 272,000</math> is <math>2,769</math>, square root of <math>(5,772/3,250)^4 x 272,000</math> is <math>1,638.97</math>
  27. See this: "congratulations, your calculated 1650 have left a heavy footprint in the net".
  28. Cite error: Invalid <ref> tag; no text was provided for refs named josselin
  29. Turner, David G.; Rohanizadegan, Mina; Berdnikov, Leonid N.; Pastukhova, Elena N. (2006). "The Long-Term Behavior of the Semiregular M Supergiant Variable BC Cygni". The Publications of the Astronomical Society of the Pacific 118 (849): 1533. Bibcode 2006PASP..118.1533T. Template:Citation error.
  30. Massey, Philip; Levesque, Emily M.; Olsen, K. A. G.; Plez, Bertrand; Skiff, B. A. (2007). "HV 11423: The Coolest Supergiant in the SMC". The Astrophysical Journal 660: 301. arXiv:astro-ph/0701769. Bibcode 2007ApJ...660..301M. Template:Citation error.
  31. Paumard, T; Pfuhl, O; Martins, F; Kervella, P; Ott, T; Pott, J.-U; Le Bouquin, J. B; Breitfelder, J et al. (2014). "GCIRS 7, a pulsating M1 supergiant at the Galactic centre . Physical properties and age". Astronomy & Astrophysics 568: A85. arXiv:1406.5320. Bibcode 2014A&A...568A..85P. Template:Citation error.
  32. http://iopscience.iop.org/article/10.1088/0004-6256/135/4/1430/meta
  33. Ramstedt, S.; Schöier, F. L.; Olofsson, H. (2009). "Circumstellar molecular line emission from S-type AGB stars: mass-loss rates and SiO abundances". Astronomy and Astrophysics 499 (2): 515–527. arXiv:0903.1672. Bibcode 2009A&A...499..515R. Template:Citation error.
  34. Ramstedt, S.; Schöier, F. L.; Olofsson, H.; Lundgren, A. A. (2006). "Mass-loss properties of S-stars on the AGB". Astronomy and Astrophysics 454 (2): L103. arXiv:astro-ph/0605664. Bibcode 2006A&A...454L.103R. Template:Citation error.
  35. Levesque, Emily M.; Massey, P.; Zytkow, A. N.; Morrell, N. (1 September 2014). "Discovery of a Thorne-̇Żytkow object candidate in the Small Magellanic Cloud". Monthly Notices of the Royal Astronomical Society: Letters 443: L94. arXiv:1406.0001. Bibcode 2014MNRAS.443L..94L. Template:Citation error.
  36. Arroyo-Torres, B.; Wittkowski, M.; Chiavassa, A.; Scholz, M.; Freytag, B.; Marcaide, J. M.; Hauschildt, P. H.; Wood, P. R. et al. (2015). "What causes the large extensions of red supergiant atmospheres?. Comparisons of interferometric observations with 1D hydrostatic, 3D convection, and 1D pulsating model atmospheres". Astronomy & Astrophysics 575: A50. arXiv:1501.01560. Bibcode 2015A&A...575A..50A. Template:Citation error.
  37. "Antares: Betelgeuse's Neglected Twin" Aavso.org.
  38. https://doi.org/10.1088%2F0004-637X%2F746%2F2%2F154
  39. Gull, T. R.; Damineli, A. (2010). "JD13 – Eta Carinae in the Context of the Most Massive Stars". Proceedings of the International Astronomical Union 5: 373. arXiv:0910.3158. Bibcode 2010HiA....15..373G. Template:Citation error.
  40. Smith, Nathan (2011). "Explosions triggered by violent binary-star collisions: Application to Eta Carinae and other eruptive transients". Monthly Notices of the Royal Astronomical Society 415 (3): 2020. arXiv:1010.3770. Bibcode 2011MNRAS.415.2020S. Template:Citation error.
  41. Template:Cite web
  42. Baron, F.; Monnier, J. D.; Kiss, L. L.; Neilson, H. R.; Zhao, M.; Anderson, M.; Aarnio, A.; Pedretti, E. et al. (2014). "CHARA/MIRC Observations of Two M Supergiants in Perseus OB1: Temperature, Bayesian Modeling, and Compressed Sensing Imaging". The Astrophysical Journal 785: 46. arXiv:1405.4032. Bibcode 2014ApJ...785...46B. Template:Citation error.
  43. Stickland, D. J. (1985). "IRAS observations of the cool galactic hypergiants". The Observatory 105: 229. Bibcode 1985Obs...105..229S.
  44. 44.0 44.1 Bergeat, J.; Chevallier, L. (2005). "The mass loss of C-rich giants". Astronomy and Astrophysics 429: 235. arXiv:astro-ph/0601366. Bibcode 2005A&A...429..235B. Template:Citation error. pp. 235-246.
  45. Template:Cite web
  46. Achmad, L. (1992). "A photometric study of the G0-4 Ia(+) hypergiant HD 96918 (V382 Carinae)". Astronomy and Astrophysics 259: 600–606. Bibcode 1992A&A...259..600A.
  47. Wasatonic, Richard P.; Guinan, Edward F.; Durbin, Allyn J. (2015). "V-Band, Near-IR, and TiO Photometry of the Semi-Regular Red Supergiant TV Geminorum: Long-Term Quasi-Periodic Changes in Temperature, Radius, and Luminosity". Publications of the Astronomical Society of the Pacific 127 (956): 1010. Bibcode 2015PASP..127.1010W. Template:Citation error.
  48. https://doi.org/10.1086%2F176303
  49. https://doi.org/10.1051%2F0004-6361%3A20078306
  50. https://www.eso.org/public/news/eso1741/
  51. https://doi.org/10.1086%2F505025
  52. https://arxiv.org/abs/1802.06086
  53. http://www.newforestobservatory.com/2012/07/02/the-second-reddest-star-in-the-sky-119-tauri-ce-tauri/
  54. http://iopscience.iop.org/article/10.1088/0004-637X/778/2/109/meta
  55. http://iopscience.iop.org/article/10.1088/2041-8205/734/1/L13/meta
  56. http://iopscience.iop.org/article/10.3847/2041-8213/aa60c8/meta
  57. http://depts.washington.edu/naivpl/sites/default/files/hz.shtml
  58. Gorlova, N.; Lobel, A.; Burgasser, A. J.; Rieke, G. H.; Ilyin, I.; Stauffer, J. R. (2006). "On the CO Near‐Infrared Band and the Line‐splitting Phenomenon in the Yellow Hypergiant ρ Cassiopeiae". The Astrophysical Journal 651 (2): 1130–1150. arXiv:astro-ph/0607158. Bibcode 2006ApJ...651.1130G. Template:Citation error.
  59. http://arxiv.org/ftp/arxiv/papers/1010/1010.4610.pdf
  60. Woodruff, H. C.; Eberhardt, M.; Driebe, T.; Hofmann, K.-H. et al. (2004). "Interferometric observations of the Mira star o Ceti with the VLTI/VINCI instrument in the near-infrared". Astronomy & Astrophysics 421 (2): 703–714. arXiv:astro-ph/0404248. Bibcode 2004A&A...421..703W. Template:Citation error.
  61. http://adsabs.harvard.edu/abs/2005ESASP.560..651H
  62. Nieuwenhuijzen, H.; De Jager, C.; Kolka, I.; Israelian, G.; Lobel, A.; Zsoldos, E.; Maeder, A.; Meynet, G. (2012). "The hypergiant HR 8752 evolving through the yellow evolutionary void". Astronomy & Astrophysics 546: A105. Bibcode 2012A&A...546A.105N. Template:Citation error.
  63. https://doi.org/10.1051%2F0004-6361%3A20000451
  64. doi = 10.1051/0004-6361/201116858
  65. bibcode=1995ASPC...83..176L
  66. https://www.britannica.com/place/S-Doradus
  67. Template:Citation
  68. Dinh-V.-Trung; Muller, Sébastien; Lim, Jeremy; Kwok, Sun; Muthu, C. (2009). "Probing the Mass-Loss History of the Yellow Hypergiant IRC+10420". The Astrophysical Journal 697: 409. arXiv:0903.3714v1. Bibcode 2009ApJ...697..409D. Template:Citation error.
  69. See http://vizier.u-strasbg.fr/viz-bin/VizieR-5?-out.add=.&-source=II/224/cadars&recno=9107 .
  70. Cite error: Invalid <ref> tag; no text was provided for refs named wittkowski092017
  71. bibcode = 2009ApJ...691.1816N
  72. https://doi.org/10.1017%2FS1743921307000622
  73. Moravveji, Ehsan; Guinan, Edward F.; Khosroshahi, Habib; Wasatonic, Rick (2013). "The Age and Mass of the α Herculis Triple-star System from a MESA Grid of Rotating Stars with 1.3 <= M/M ⊙ <= 8.0". The Astronomical Journal 146 (6): 148. arXiv:1308.1632. Bibcode 2013AJ....146..148M. Template:Citation error.
  74. https://doi.org/10.1051%2F0004-6361%2F201117472
  75. http://adsabs.harvard.edu/abs/1972A&AS....7..257W
  76. https://doi.org/10.1051%2F0004-6361%2F201629127
  77. https://doi.org/10.1071%2FAS07017
  78. https://fotw.info/flags/br_astro.html
  79. http://stars.astro.illinois.edu/sow/deneb.html
  80. doi=10.1051/0004-6361:20078590
  81. https://doi.org/10.1086%2F116787
  82. http://adsabs.harvard.edu/abs/2005AcA....55..247M
  83. https://doi.org/10.1111%2Fj.1365-2966.2009.14433.x
  84. doi=10.1088/0004-6256/140/5/1329
  85. http://stars.astro.illinois.edu/sow/enif.html
  86. arxiv=1508.01909
  87. Ask Andy: The Biggest Star
  88. https://doi.org/10.1086%2F192099
  89. http://stars.astro.illinois.edu/sow/gacrux.html
  90. bibcode = 2008A&A...486..971B
  91. https://www.nasa.gov/multimedia/imagegallery/image_feature_1147.html
  92. http://adsabs.harvard.edu/abs/1991A&A...246..490L
  93. https://doi.org/10.1051%2F0004-6361%2F200913771
  94. http://stars.astro.illinois.edu/sow/almach.html
  95. http://iopscience.iop.org/article/10.1088/0004-637X/747/2/108/meta
  96. doi=10.1051/0004-6361/201322894
  97. https://doi.org/10.1086%2F301114
  98. doi=10.1093/mnras/stt1037
  99. http://stars.astro.illinois.edu/sow/polis.html
  100. https://doi.org/10.1086%2F113678
  101. https://doi.org/10.1111%2Fj.1365-2966.2012.21873.x
  102. https://doi.org/10.1051%2F0004-6361%3A20065105
  103. 103.0 103.1 103.2 https://www.aanda.org/articles/aa/pdf/2011/02/aa14442-10.pdf
  104. https://doi.org/10.1051%2F0004-6361%2F201014442
  105. https://doi.org/10.1086%2F422180
  106. https://doi.org/10.1051%2F0004-6361%2F201014442
  107. https://doi.org/10.1086%2F305388
  108. doi=10.1111/j.1365-2966.2010.17167.x
  109. http://earthsky.org/space/how-big-is-the-biggest-monster-star
  110. arxiv = 1109.4425
  111. doi=10.1051/0004-6361/201322696
  112. doi=10.1111/j.1365-2966.2005.08796.x (Notice: for radius and luminosity, see Table 1 with d=2 kpc.)
  113. doi = 10.1051/0004-6361/201321434. Title = Dynamical mass of the O-type supergiant in ζ Orionis A
  114. bibcode=2007MNRAS.377..415N doi=10.1111/j.1365-2966.2007.11608.x
  115. bibcode=1992A&AS...95..589H
  116. https://www.youtube.com/watch?v=eE5K5FibSxk
  117. http://outreach.atnf.csiro.au/education/senior/astrophysics/photometry_luminosity.html

Notes

  1. The given reference estimates VV Cephei A's roche lobe to be 1,800 R, which indicates the radius can be no longer than this. However, a diagram in the reference features Roche lobe to be around 3,000 R.

de:Liste der größten Sterne es:Estrellas más grandes conocidas fr:Liste d'étoiles par taille décroissante it:Stelle più grandi conosciutept:Lista das maiores estrelas conhecidas pt-br:Lista das maiores estrelas conhecidas pl:Lista największych gwiazdru:Список крупнейших звёзд ja:直径の大きい恒星の一覧